(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

A

(43) International Publication Date (10) International Publication Number
10 September 2004 (10.09.2004) PCT WO 2004/077206 A2
(51) International Patent Classification’: GOG6F (81) Designated States (unless otherwise indicated, for every

(21) International Application Number:
PCT/IB2004/050124

(22) International Filing Date: 18 February 2004 (18.02.2004)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:

03100484.9 27 February 2003 (27.02.2003) EP

(71) Applicant (for all designated States except US): KONIN-
KLIJKE PHILIPS ELECTRONICS N.V. [NL/NL]J;
Groenewoudseweg 1, N1-5621 BA Eindhoven (NL).

(72) Inventors; and

(75) Inventors/Applicants (for US only): RUTTEN, Martijn,
J. [NL/NL]; c/o Prof. Holstlaan 6, NL-5656 AA Eindhoven
(NL). VAN ELJNDHOVEN, Josephus, T., J. [NL/NL]; c/o
Prof. Holstlaan 6, NL-5656 AA Eindhoven (NL). POL,
Evert-Jan, D. [NL/NL]; c/o Prof. Holstlaan 6, NL.-5656
AA Eindhoven (NL).

(74) Agent: DUILJVESTILJN, Adrianus, J.; Prof. Holstlaan 6,
NL-5656 Aa Eindhoven (NL).

kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KP, KR, KZ,LC, LK, LR, LS, LT, LU, LV, MA, MD,
MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG,
PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM,
ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), Euro-
pean (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR,
GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK,
TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
ML, MR, NE, SN, TD, TG).

Declaration under Rule 4.17:

as to applicant’s entitlement to apply for and be granted
a patent (Rule 4.17(ii)) for the following designations AE,
AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ,
CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE,
EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS,

[Continued on next page]

(54) Title: DATA PROCESSING SYSTEM HAVING A PLURALITY OF PROCESSING ELEMENTS, A METHOD OF CON-
TROLLING A DATA PROCESSING SYSTEM HAVING A PLURALITY OF PROCESSING ELEMENTS

ceu Proc A

ProcB Proc €

| -1IB

MEM

7206 A2 I 0 0 0RO A A A

I~ (CPU, ProcA, ProcB, ProcC). Therefore a data processing system i

o

(57) Abstract: The invention relates to task management in a data processing system, having a plurality of processing elements

s provided, comprising at least a first processing element (CPU,

& ProcA, ProcB, ProcC) and a second processing element (CPU, ProcA, ProcB, ProcC) for processing a stream of data objects (DS_Q,

; DS R, DS S, DST), the first processing element being arranged to

pass data objects from the stream of data objects to the second

& processing element. The first and the second processing element are arranged for parallel execution of an application comprising a
& setof tasks (TP, TA, TB 1, TB2, TC), and the first and the second processing element are arranged to be responsive to the receipt of a
unique identifier. In order to ensure integrity of data during reconfiguration of the application, the unique identifier is inserted into the
data stream and passed from one processing element to the other. Application reconfiguration is performed when the corresponding

processing element receives the unique identifier, and as a result glo
space.

=

bal application control is allowed at a unique location in the data

WO 2004/077206 A2 I 9000 00000 0T

JP. KE, KG, KP. KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, Published:

MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, — without international search report and to be republished
PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, upon receipt of that report

TM, TN, TR, TT, TZ, UA, UG, UZ, VC, VN, YU, ZA, ZM,
ZW, ARIPO patent (BW, GH, GM, KE, LS, MW, MZ, SD,
SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY,
KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG,
CH, CY, CZ, DE, DK, EE, ES, Fl, FR, GB, GR, HU, IE, IT,
LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI patent (BF, BJ,
CFE, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD,
TG)

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gagzette.

10

15

20

25

WO 2004/077206 PCT/1IB2004/050124

Data processing system having a plurality of processing elements, a method of controlling a

data processing system having a plurality of processing elements

The invention relates to a data processing system, comprising at least a first
processing element and a second processing element for processing a stream of data objects,
the first processing element being arranged to pass data objects from the stream of data
objects to the second processing element, wherein the first and the second processing element
are arranged for execution of an application, the application comprising a sct of tasks, and
wherein the first and the second processing element are arranged to be responsive to the
receipt of a unique identifier.

The invention further relates to a method of controlling a data processing
system, the data processing system comprising at least a first processing element and a
second processing element for processing a stream of data objects, wherein the first
processing element is arranged to pass data objects from the stream of data objects to the
second processing element, and wherein the first and the second processing element are
arranged for execution of an application, the application comprising a set of tasks, the method
of controlling comprising the step of recognizing a unique identifier by one of the first and
the second processing element.

A multiple processing element architecture for high performance, data-
dependent media processing, for example high-definition MPEG decoding, is known. Media
processing applications can be specified as a set of concurrently executing tasks that
exchange information solely by unidirectional streams of data. G. Kahn introduced a formal
model of such applications in 1974, “The Semantics of a Simple Language for Parallel
Programming”, Proc. of the IFIP congress 1974, August 5 — 10, Stockholm Sweden, North-
Holland publ. Co, 1974, pp. 471 — 475 followed by an operational description by Kahn and
MacQueen in 1977, “Co-routines and Networks of Parallel Programming”, Information
Processing 77, B. Gilchhirst (Ed.), North-Holland publ., 1977, pp. 993 — 998. This formal
model is commonly referred to as a Kahn Process Network.

An application is known as a set of concurrently executable tasks. Information
can only be exchanged between tasks by unidirectional streams of data. Tasks should
communicate only deterministically by means of a read and write action regarding predefined

data streams. The data streams are buffered on the basis of a FIFO behavior. Due to the

10

15

20

25

30

WO 2004/077206 PCT/IB2004/050124

buffering two tasks communicating through a stream do not have to synchronize on
individual read or write actions.

In stream processing, successive operations on a stream of data are performed
by different processing elements. For example, a first stream might consist of pixel values of
an image, that are processed by a first processing element to produce a second stream of
blocks of Discrete Cosine Transformation (DCT) coefficients of 8x8 blocks of pixels. A
second processing element might process the blocks of DCT coefficients to produce a stream
of blocks of selected and compressed coefficients for each block of DCT coefficients.

Fig. 1 shows an illustration of the mapping of an application to a multiple
processing element architecture as known from the prior art. In order to realize data stream
processing, a number of processing elements (Proc 1, Proc 2, Proc 3) are provided, each
capable of performing a particular operation repeatedly, each time using data from a next
data object from a stream of data objects and/or producing a next data object in such a
stream. The streams pass from one processing element to another, so that the stream
produced by a first processing element can be processed by a second processing element and
so on. One mechanism of passing data from a first to a second processing element is by
writing the data blocks produced by the first processing element to a memory.

The data streams in the network are buffered. Each buffer is realized as a
FIFO, with precisely one writer and one or more readers. Due to this buffering, the writer and
readers do not need to mutually synchronize individual read and write actions on the channel.
Reading from a channel with insufficient data available causes the reading task to stall. The
processing elements can be dedicated hardware function units which are only weakly
programmable. All processing elements run in parallel and execute their own thread of
control. Together they execute a Kahn-style application, where each task is mapped onto a
single processing element. The processing elements allow multi-tasking, i.e. multiple tasks
can be mapped onto a single processing element.

As the state and progress of the overall application is distributed in time and
space, application management faces problems with application reconfiguration, analyzing
application progress as well as debugging. Especially with multitasking processing elements
that dynamically schedule their tasks, the global application is difficult to control. Unsolicited
events may occur which ask for an application mode change. Analyzing overall application
progress is of continuous concern in systems with data dependent processing and real-time
requirements. In addition, debugging applications on multiprocessor systems with

multitasking processing elements, requires the ability to set breakpoints per task. Intruding

10

15

20

25

30

WO 2004/077206 PCT/IB2004/050124

running tasks for mode changes requires comparable measures as needed for setting task
breakpoints.

US 6,457,116 describes an apparatus for providing local control of processing
elements in a network of processing elements. The processing elements are joined in a
complete array by means of several interconnect structures. Each interconnect structure forms
an independent network, but the networks do join at input switches of the processing
elements. The network structure is an H-tree network structure with a single source and
multiple receivers in which individual processing elements may be written to. This
configuration network is the mechanism by which configuration memories of the processing
elements get programmed and also to communicate the configuration data. The configuration
network is arranged so that receivers receive the broadcast within the same clock cycle. A
processing element is configured to store a number of configuration memory contexts, and
the selected configuration memory context controls the processing element. Each processing
element in the networked array of processing elements has an assigned physical
identification. Data is transmitted to at least one of the processing elements of the array, the
data comprising control data, configuration data, an address mask, and a destination
identification. The transmitted address mask is applied to the physical identification and to
the destination identification. The masked physical identification and the masked destination
identification are compared, and if they match, at least one of the number of processing
elements is manipulated in response to the transmitted data. Manipulation comprises
selecting one of the number of configuration memory contexts to control the functioning of
the processing element. US 6,108,760 describes a comparable apparatus for position
independent reconfiguration in a network of processing elements. Manipulation comprises
programming a processing element with at least one configuration memory context.

It is a disadvantage of the prior art data processing system that the
reconfiguration is performed at a specific moment in time. For example, in case of a
pipelined network of processing elements, reconfiguring at a specific moment in time means
that the data integrity within the pipelined network can not be guaranteed any more.

An object of the invention is to provide a generic solution for global
application control in a Kahn-style data processing system.

This object is achieved with a data processing system of the kind set forth,
characterized in that the stream of data objects further comprises the unique identifier,
and that the first processing element is further arranged to pass the unique identifier to the

second processing element.

10

15

20

235

30

WO 2004/077206 PCT/1IB2004/050124

Passing the unique identifier in the data processing system from one
processing element to the other as an element in the ordered stream of data, allows global
application control at a unique location in the data space, as opposed to at a single point in
time. For example, application reconfiguration or individual task reconfiguration can be
performed, while maintaining the pipelined processing as well as maintaining integrity of the
data in the stream of data objects. As a result the overall performance of the data processing
system is increased, since termination and restart of the execution of the application can be
avoided. ‘

An embodiment of the data processing system according to the invention is
characterized in that at least one of the processing elements is arranged to insert the unique
identifier into the stream of data objects. In case the application is ready for reconfiguration,
or a breakpoint should be introduced, one of the existing processing elements is capable of
inserting the unique identifier into the data stream, without requiring any additional
measures.

An embodiment of the data processing system according to the invention is
characterized in that at least one task of the set of tasks is arranged to have a programmable
identifier, wherein a corresponding processing element of the first and the second processing
elements is arranged to compare the programmable identifier with the unique identifier. The
purpose of the programmable identifier is to allow a response to a specific unique identifier
that is passed through via the data stream. Responding to a unique identifier is programmed
per task, so that each task can respond in an individual way. In this way, the programmable
identifier allows selecting a task that should be reconfigured, in case of a multitasking
processing element. In case of a match between the programmable identifier and the unique
identifier for a running task, it means that task is ready for reconfiguration. The comparison
results in a match when these two identifiers have the same value, or for instance, when the
programmable identifier has a reserved value that always enforces a match.

An embodiment of the data processing system according to the invention is
characterized in that at least one processing element of the first and second processing
elements is arranged to pause a corresponding task of the set of tasks, upon a match between
the programmable identifier and the unique identifier. An advantage of this embodiment is
that the execution of one or more tasks is suspended at a well-defined point in the data space.
At a later moment in time reconfiguration of the application can take place, without the tasks

involved in the reconfiguration being further on their respective execution paths at that time.

10

15

20

25

30

WO 2004/077206 PCT/IB2004/050124

An embodiment of the data processing system according to the invention is
characterized in that at least one processing element of the first and second processing
elements is arranged to generate an interrupt signal upon a match between the programmable
identifier and the unique identifier. By generating an interrupt signal, the corresponding
processing element can signal that a task is ready for reconfiguration, or the interrupt signal
can be used to determine the progress of the task execution.

An embodiment of the data processing system according to the invention is
characterized in that the data processing system further comprises a control processing
element, wherein the control processing element is arranged to reconfigure the application,
in response to the interrupt signal. The information needed for task reconfiguration is not
related to the unique identifier, allowing the mechanism of forwarding and matching of the
unique identifier to be independent of the task functionality. As a result, this mechanism can
be implemented in a reusable hardware or software component.

An embodiment of the data processing system according to the invention is
characterized in that the stream of data objects comprises a plurality of packets, the plurality
of packets arranged to store data objects, and a dedicated packet, the dedicated packet
arranged to store the unique identifier. The processing elements identify the dedicated
packets, for example based on their packet header, and forward these packets unmodified
without disrupting the stream of data objects.

According to the invention a method of controlling a data processing system is
characterized in that the method of controlling further comprises the following steps:
inserting the unique identifier into the stream of data objects, and passing the unique
identifier from the first processing element to the second processing element. This method
allows run-time reconfiguration, while maintaining data integrity of the application running
on the data processing system. Besides reconfiguration, the unique identifier can also be used
to define debug breakpoints and to determine application latency.

Further embodiments of the data processing system and the method of

controlling a data processing system are described in the dependent claims.

Figure 1 shows an illustration of the mapping of an application onto a data
processing system according to the prior art.
Figure 2 shows a schematic block diagram of an architecture of a stream based

processing system.

10

15

20

25

30

WO 2004/077206 PCT/IB2004/050124

Figure 3 shows a schematic block diagram of an application mapped onto the
stream based processing system shown in Figure 2.

Figure 4 shows a schematic block diagram of location ID’s programmed into
the shells and inserted into the data streams for a stream based processing system according
to Figure 2.

Figure 5 shows a flowchart for disabling the execution of a task for a stream

based processing system according to Figure 2.

Figure 2 shows a processing system for processing a stream of data objects
according to the invention. The system comprises a central processing unit CPU, three
coprocessors ProcA, ProcB and ProcC, a memory MEM, shells SP, SA, SB and SC, and a
communication network CN. Shells SP, SA, SB and SC are associated with processor CPU
and coprocessors ProcA, ProcB and ProcC, respectively. The communication network CN
couples the shells SP, SA, SB and SC and the memory MEM. The processor CPU and
coprocessors ProcA, ProcB and ProcC are coupled to their corresponding shell SP, SA, SB
and SC, via interfaces IP, IA, IB and IC, respectively. In different embodiments, a different
number of processors and/or coprocessors may be included into the system. The memory
MEM can be an on-chip memory, for example. The processor CPU may be a programmable
media processor, while the coprocessors ProcA, ProcB and ProcC are preferably dedicated
processors, each being specialized to perform a limited range of stream processings. Each
coprocessor ProcA, ProcB and ProcC is arranged to apply the same processing operation
repeatedly to successive data objects of a stream. The coprocessors ProcA, ProcB and ProcC
may each perform a different task or function, e.g. variable length decoding, run-length
decoding, motion compensation, image scaling or performing a DCT transformation. In
operation each coprocessor ProcA, ProcB and ProcC executes operations on one or more data
streams. The operations may involve, for example, receiving a stream and generating another
stream, or receiving a stream without generating a new stream, or generating a stream
without receiving a stream, or modifying a received stream. The processor CPU and
coprocessors ProcA, ProcB and ProcC are able to process data streams generated by other
coprocessors ProcA, ProcB and ProcC, or by processor CPU, or even streams that they have
generated themselves. A stream comprises a succession of data objects that are transferred
from and to processor CPU and coprocessors ProcA, ProcB and ProcC, via communication

network CN and memory MEM. Interfaces IP, IA, IB and IC are processor interfaces and

10

15

20

25

30

WO 2004/077206 PCT/IB2004/050124

these are customized towards the associated processor CPU and coprocessors ProcA, ProcB
and ProcC, in order to be able to handle the specific needs of processor CPU and
coprocessors ProcA, ProcB and ProcC. Accordingly, the shells SP, SA, SB and SC have a
(co)processor specific interface, but the overall architecture of the shells SP, SA, SB and SC
is generic and uniform for all (co)processors in order to facilitate the re-use of the shells in
the overall system architecture, while allowing the parameterization and adoption for specific
applications. In a different embodiment, the system can have a more dedicated application
specific interconnect structure between the (co)processors, shells and memory, with multiple
connections and multiple specialized buffers for data storage. In yet another embodiment, the
system may comprise multiple programmable processors for processing streams of data
objects, and in such a system the functionality of the shells can be implemented in software.

The shells SP, SA, SB and SC comprise a reading/writing unit for data
transport, a synchronization unit and a task-switching unit. The shells SP, SA, SB and SC
communicate with the associated (co)processor on a master/slave basis, wherein the
(co)processors acts as a master. Accordingly, the shells SP, SA, SB and SC are initialized by
a request from the corresponding (co)processor. Preferably, the communication between the
corresponding (co)processor and the shells SP, SA, SB and SC is implemented by a request-
acknowledge handshake mechanism in order to hand over argument values and wait for
requested values to return. Therefore the communication is blocking, i.e. the respective
thread of control waits for their completion. The functionality of the shells SP, SA, SB and
SC éan be implemented in software and/or in hardware.

The reading/writing unit preferably implements two different operations,
namely the read-operation enabling the processor CPU and coprocessors ProcA, ProcB and
ProcC to read data objects from the memory MEM, and the write-operations enabling the
processor CPU and coprocessors ProcA, ProcB and ProcC to write data objects into the
memory MEM.

The synchronization unit implements two operations for synchronization to
handle local blocking conditions occurring at an attempt to read from an empty FIFO or to
write to a full FIFO, respectively.

The system architecture according to Figure 2 supports multitasking, meaning
that several application tasks may be mapped onto a single processor CPU or coprocessor
ProcA, ProcB and ProcC. A multitasking support is important in achieving flexibility of the
architecture towards configuring a range of applications and reapplying the same hardware

processors at different places in a data processing system. Multitasking implies the need for a

10

15

20

25

30

WO 2004/077206 PCT/IB2004/050124

task-switching unit as the process that decides which task the (co)processor must execute at
which point in time to obtain proper application progress. Preferably, the task scheduling is
performed at run-time as opposed to a fixed compile-time schedule.

The processor CPU comprises a control processor, for controlling the data
processing system. The stream of data objects comprises a plurality of data packets that hold
the data. For efficient packetization of the data, variable length packets are used on the data
streams.

Figure 3 shows a schematic block diagram of an example application mapped
onto the stream based processing system, as described above. The application is executed as a
set of tasks TA, TB1, TB2, TC and TP, that communicate via data streams, including data
streams DS_Q, DS_R, DS_S and DS_T. Task TA is executed by coprocessor ProcA, task
TB1 and TB2 are executed by coprocessor ProcB, task TC is executed by coprocessor ProcC
and task TP is executed by processor CPU. In alternative embodiments, an application may
consist of a different set of tasks, with a different mapping onto the processor CPU and
coprocessors ProcA, ProcB and ProcC. The data streams DS_Q, DS_R, DS_S and DS_T are
buffered data streams as they include a FIFO buffer BQ, BR, BS and BT, respectively. The
FIFO buffers BQ, BR, BS and BT are physically allocated in the memory MEM.

During execution of an application, a task may have to be dynamically added
to or removed from the application graph, as shown in Figure 3. In order to perform this
operation, without causing inconsistency problems with the data stored in the FIFO buffers
BQ, BR, BS and BT, the task reconfiguration is performed at a specific location in the data
space. In order to be able to perform this reconfiguration, a unique identifier in the form of a
so-called location ID is inserted into the data stream and this location ID is stored in a
dedicated packet. A uniform packet header, for the data packets as well as the location ID
packet, contains information on the packet type and its payload size. Location ID packets can
be discerned from other packets by their unique packet type. The shells SP, SA, SB and SC
contain a task table, comprising a programmable field for each task mapped onto the
corresponding processor CPU and coprocessor ProcA, ProcB and ProcC. The programmable
field is used for storing a programmed location ID. The programmed location ID can be
implemented by means of a memory mapped IO (MMIO) register.

The processor CPU and the coprocessors ProcA, ProcB and ProcC parse the
incoming data stream, and are capable of recognizing location ID packets. Upon recognition
of a location ID packet, the processor CPU and coprocessors ProcA, ProcB and ProcC

forward the location ID packet to its output data streams. Upon receiving a location ID

10

15

20

25

30

WO 2004/077206 PCT/IB2004/050124

packet, the processor CPU and coprocessor ProcA, ProcB and ProcC also pass the payload
from the packet, i.e. the location ID, to its corresponding shell SP, SA, SB and SC via the
corresponding interface IP, 1A, IB and IC, together with an identifier of the corresponding
task, i.e. a task ID, that is currently being executed. Upon reception of a location ID and a
task ID from the processor CPU or coprocessor ProcA, ProcB and ProcC, the corresponding
shell SP, SA, SB and SC compares the received location ID with the programmed location
ID, for the task having said task ID. Upon a match, the shell SP, SA, SB and SC suspends
further processing of said task by sending a signal to the corresponding processor CPU or
coprocessor ProcA, ProcB and ProcC, and also sends an interrupt signal to the control
processor.

Subsequently, the control processor can analyze or reconfigure the local task
state under software control. After reconfiguration, the control processor instructs the shell
SP, SA, SB and SC to arrange resumption of said task by the corresponding processor CPU
or coprocessor ProcA, ProcB and ProcC.

Processor CPU and coprocessor ProcA, ProcB and ProcC are capable of
generating location ID packets and inserting these into the stream of data objects. Typically,
these location ID packets are inserted only at predefined locations into the data stream, for
example at the end of an MPEG frame. The processor CPU and the coprocessor ProcA,
ProcB and ProcC are instructed to insert such a location ID packet into the data siream by the
control processor, or indirectly by the corresponding shell SP, SA, SB and SC upon a request
for a new task from the (co) processor.

Figure 4 shows shells SP, SA, SB and SC in more detail. Shell SP comprises a
task table 401, shell SA comprises a task table 403, shell SB comprises a task table 405 and
shell SC comprises a task table 407. The task table 401 comprises a programmable field 409
for task TP, task table 403 comprises a programmable field 411 for task TA, task table 405
comprises programmable fields 413 and 415 for tasks TB_1 and TB_2 respectively, and task
table 407 comprises programmable field 417 for task TC. Task tables 401, 403, 405 and 407
may comprise more programmable fields for different tasks running on the corresponding
processor CPU and coprocessors ProcA, ProcB and ProcC, not shown in Figure 4. Figure 4
also shows data streams DS_Q, DS_R, DS_S and DS_T comprising a location ID packet 419.
The location ID packet 419 comprises a packet header PH. The data streams DS_Q, DS_R,
DS_S and DS_T also comprise a plurality of data packets, not shown in Figure 4, both prior
to and after the location ID packet 419. The data streams DS_Q, DS_R, DS_S and DS_T may

also comprise more location ID packets, not shown in Figure 4.

10

15

20

25

30

WO 2004/077206 PCT/IB2004/050124
10

Referring again to Figure 2, 3 and 4, the control processor may decide to
perform an application reconfiguration, implying the dynamical removal of task TP from the
set of tasks TP, TA, TB1, TB2 and TC, and to directly connect task TA to task TB2. The
control processor programs a location ID PLID 1 into the shells SP, SA and SB, by writing
this location ID to the corresponding task table 401, 403 and 405, in the programmable fields
409, 411 and 415 of tasks TP, TA and TB2, respectively. The control processor instructs
coprocessor ProcA to generate the location ID packet, by storing the location ID as well
information when a location ID packet, containing said location ID, should be generated, into
a dedicated register for task TA in the task table of shell SA. Based on said information
stored in shell SA, a location ID packet 419 containing location ID LID 1 is inserted into the
data streams DS_Q and DS_R by coprocessor ProcA, under control of task TA. Task TA
signals that it has recognized, by creating, location ID LID_1, and instructs coprocessor
ProcA to send its task ID as well as location ID LID 1 to shell SA, via interface IA. Using
the received task ID of task TA, shell SA compares the received location ID LID_1 with the
programmed location ID PLID 1 for task TA and decides that these match. Shell SA stops
further processing of task TA by coprocessor ProcA, and sends an interrupt signal to the
control processor. Task TP recognizes location ID packet 419 in its input data siream DS_R,
from information on the type of packet stored in the packet header PH, and instructs
processor CPU to forward location ID packet 419 to its output data stream DS_S. Task TP
also instructs processor CPU to pass the recognized location ID LID_1 together with its task
ID to shell SP, via interface IP. Using the received task ID of task TP, shell SP compares the
received location ID LID_1 with the programmed location ID PLID_1 for task TP and
decides that these match. Shell SP stops further processing of task TP by processor CPU and
sends an interrupt signal to the control processor. Task TB2 recognizes location ID packet
419 in its input data streams DS_S, from information on the type of packet stored in the
packet header PH, and instructs coprocessor ProcB to forward the location ID packet 419 to
its output data stream DS_T. Task TB2 also instructs coprocessor ProcB to pass the
recognized location ID LID_1 together with its task ID to shell TB, via interface IB. Using
the received task ID, shell TB compares the received location ID LID_1 with the
programmed location ID PLID _1 for task TB2 and decides that these match. Shell SB stops
further processing of task TB2 by coprocessor ProcB and sends an interrupt signal to the
control processor. Task TB1 and task TC also recognize the location ID packet 419 in their
respective input data streams from information on the type of packet stored in the packet

header PH. Task TB1 and task TC instruct their corresponding coprocessor TB and TC to

10

15

20

25

30

WO 2004/077206 PCT/IB2004/050124
11

forward the location ID packet 419 to their respective output data streams, and the recognized
location ID LID 1 is also sent to their corresponding shells SB and SC, together with the
corresponding task ID. Shells SB and SC detect that for the correspondingly received task ID
no programmed location ID’s exist and do not take any further action in this respect. In
different embodiments, different programmed location ID’s may exist in the task table of
shells SP, SA, SB and SC for a given task, and in this case a received location ID
corresponding to that task is compared to all programmed location ID’s to verify if there is a
match. Since tasks TA, TP and TB2 stopped processing at the same location in the data
stream, FIFO buffers BR and BS are empty. The control processor removes task TP from the
application graph and reconnects tasks TA and TB2, for example via data stream DS_R using
FIFO buffer BR, and frees data stream DS_S as well as FIFO buffer BS. The control
processor instructs to restart task TA and TB2 by writing information into the corresponding
shells SA and SB.

The concept of location ID’s allows run-time application reconfiguration while
maintaining data integrity of the application graph in a multiprocessor system. As a result, no
termination and restart of the execution of the application is required, increasing the overall
performance of the data processing system. Application reconfiguring can entail: changing
parameters of one or more tasks, modifying buffer sizes or their location in memory,
modifying the task interconnect structures, modifying the mapping or tasks to (co)processors,
instantiating and connecting more tasks or buffers, removing and disconnecting tasks or
buffers, for example. For a multi-tasking processor, the processor can continue processing
other tasks while reconfiguration takes place. Two special programmable location ID values
are reserved to match any received location ID or none at all.

In different embodiments, the concept of location ID’s can be used for
analyzing overall application progress or debugging applications, on multiprocessor systems
with multi-tasking processing elements. The location ID’s allow to set debug breakpoints per
task at unique positions in the data processing, or can be used to determine application
latency. In case of analyzing the overall application progress, it is not required to pause the
active task, but for example only generating an interrupt signal will suffice. Using that
interrupt signal the progress can be determined.

The information needed for task reconfiguration is not part of the location ID
packet, which allows the mechanism of forwarding the location ID packet, matching the

location ID with the programmed location ID, and signaling an interrupt to the control

10

15

20

25

30

WO 2004/077206 PCT/IB2004/050124
12

processor, to be independent of the task functionality. As a result, the implementation of said
mechanism can be done by means of a reusable hardware or software component.

In different embodiments, the processor CPU or coprocessors ProcA, ProcB
and ProcC are arranged to store the value of the encountered location ID, as well as the result
of the match between the location ID and the programmed location ID in their corresponding
shell SP, SA, SB and SC. In another embodiment, the processor CPU or coprocessors ProcA,
ProcB and ProcC are arranged to store only the result of the match between the location ID
and the programmed location ID in their corresponding shell SP, SA, SB and SC. Instead of
receiving an interrupt signal, the control processor itself investigates the result of the match at
a later moment in time, for example by means of a polling mechanism. In yet another
embodiment, the processor CPU or coprocessors ProcA, ProcB and ProcC are arranged to
store only the value of the encountered location ID. The stored value of the location ID can
indicate if this location ID has already passed the corresponding (co)processor, via the data
stream.

The task-switching unit of shells SP, SA, SB and SC is responsible for
selecting tasks to execute on the corresponding processor CPU or coprocessor ProcA, ProcB
and ProcC. The interfaces IP, IA, IB and IC implement the mechanism for receiving and
matching the location ID detected by the processor CPU and coprocessor ProcA, ProcB and
ProcC, respectively. Implementation of said mechanism can be done by means of a so-called
Report interface. The processor CPU and coprocessor ProcA, ProcB and ProcC can report
messages to the task-switching unit of shells SP, SA, SB and SC via the corresponding
interface IP, IA, IB and IC by calling Report (task_id, report_type, report_id). The task_id
corresponds to the task ID of the active task from which the Report request is issued,
report_type indicates either an error condition or a valid location ID, and report_id contains
the location ID. The task tables 401, 403, 405 and 407 in the corresponding shells SP, SA, SB
and SC further comprise five programmable fields for each task, not shown in Figure 4, for
storing an Enable flag, a LocationDisable flag, an InterruptEnable flag, a ReportType and a
Reportld, respectively. If the LocationDisable flag is set, the active task is disabled when the
report_id matches the programmed location ID, on a Report request with a valid report_type
from the corresponding processor CPU or coprocessor ProcA, ProcB and ProcC. If the
LocationDisable flag is not set in this case, the corresponding task should not be disabled. If
the Enable flag is set for a task, that task may execute on the corresponding processor CPU or
coprocessor ProcA, ProcB and ProcC. As long as the Enable flag is not set for a task, that

task will never execute on the corresponding processor CPU or coprocessor ProcA, ProcB

10

15

20

25

30

WO 2004/077206 PCT/IB2004/050124

13

and ProcC. Figure 5 shows a flowchart for disabling the execution of a task. On a Report
request, the task-switching unit determines whether the report_type argument indicates an
error condition (501). If the report_type argument indicates an error condition, the report_id
argument is stored as an error identifier in the Reportld field of the task table entry of the
selected task, using task_id. Furthermore, the report_type argument is stored in the
ReportType field, the active task is disabled by resetting the corresponding Enable flag in the
task table, and an interrupt signal is generated (505). In case the report_type argument is
valid, the report_id argument is stored as the received location ID in the task table ReportId
field, using the task_id in order to select the correct task table entry, and the report_type is
stored as a valid identifier in the ReportType field of the task table entry of the selected task,
using task_id as well (503). When the task-switching unit has received a valid report_type, the
task-switching unit compares the received report_id with the programmed location ID (503),
stored in the programmable field of the task table, and determines if there is a match (507). In
case these do not match, no further action is taken (509). In case the received report_id
matches the programmed location ID, and the LocationDisable flag is not set (509), the
corresponding task continues processing. This may be useful to measure run-time the
progress of a task. In case the LocationDisable flag is set (511), resetting the Enable flag in
the task table disables the corresponding task (513). Furthermore, in both cases, if the
InterruptEnable flag of the corresponding task is set (515), an interrupt signal is generated
(517). If the InterruptEnable flag is not set, no further action is taken (519). Two programmed
location ID values have a special semantics: the programmed location ID never matches a
report_id if the first is set to all zeros, and the programmed location ID matches all report_id’s
if the first is set to all ones.

In some embodiments the processor CPU and coprocessors ProcA, ProcB and
ProcC do not forward the location ID packet to all their output data streams. The intention of
location ID packets in a flow of data packets through the entire application graph is such that
each task will once check the location ID value against its programmed location ID values, if
any, in its corresponding shell SP, SA, SB and SC in order to allow task reconfiguration. In
some cases the application graph contains cycles, and then it should be avoided that these
location ID packets will remain running around within the application graph. The continuous
circulation of location ID packets in an application graph can be avoided by not forwarding
the location ID packets to all of the output data streams of the set of tasks, as will be clear for

the person skilled in the art.

10

0O 2004/077206 PCT/IB2004/050124
14

It should be noted that the above-mentioned embodiments illustrate rather than
limit the invention, and that those skilled in the art will be able to design many alternative
embodiments without departing from the scope of the appended claims. In the claims, any
reference signs placed between parentheses shall not be construed as limiting the claim. The
word "comprising" does not exclude the presence of elements or steps other than those listed
in a claim. The word "a" or "an" preceding an element does not exclude the presence of a
plurality of such elements. In the device claim enumerating several means, several of these
means can be embodied by one and the same item of hardware. The mere fact that certain
measures are recited in mutually different dependent claims does not indicate that a

combination of these measures cannot be used to advantage.

10

15

20

25

WO 2004/077206 PCT/IB2004/050124

15

CLAIMS:

1. A data processing system, comprising:

at least a first processing element (CPU, ProcA, ProcB, ProcC) and a second processing
element (CPU, ProcA, ProcB, ProcC) for processing a stream of data objects (DS_Q, DS_R,
DS_S, DS_T), the first processing element being arranged to pass data objects from the
stream of data objects to the second processing element,

wherein the first and the second processing element (CPU, ProcA, ProcB, ProcC) are
arranged for execution of an application, the application comprising a set of tasks (TP, TA,
TB1, TB2, TC),

and wherein at least one of the first and the second processing element is arranged to be
responsive to the receipt of a unique identifier (LID_1),

characterized in that,

the stream of data objects further comprises the unique identifier,

and that the first processing element is further arranged to pass the unique identifier to the

second processing element.

2, A data processing system according to claim 1, characterized in that at least
one of the processing elements (CPU, ProcA, ProcB, ProcC) is arranged to insert the unique
identifier (LID_1) into the stream of data objects (DS_Q, DS_R, DS_S, DS _T).

3. A data processing system according to claim 1, characterized in that at least
one task of the set of tasks (TP, TA, TB1, TB2, TC) is arranged to have a programmable
identifier (PLID_1), wherein a corresponding processing element of the first and the second
processing elements (CPU, ProcA, ProcB, ProcC) is arranged to compare the programmable

identifier (PLID_1) with the unique identifier (LID_1).

4, A data processing system according to claim 3, characterized in that at least
one processing element of the first and second processing elements (CPU, ProcA, ProcB,

ProcC) is arranged to pause a corresponding task of the set of tasks (TP, TA, TB1, TR2, TC)

10

15

20

25

30

WO 2004/077206 PCT/IB2004/050124
16

upon a match between the programmable identifier (PLID_1) and the unique identifier
(LID_1).

5. A data processing system according to claim 3, characterized in that at least
one processing element of the first and second processing elements (CPU, ProcA, ProcB,
ProcC) is arranged to generate an interrupt signal upon a match between the programmable
identifier (PLID_1) and the unique identifier (LID _1).

6. A data processing system according to claim 3, characterized in that at least
one processing element of the first and second processing elements (CPU, ProcA, ProcB,

ProcC) is arranged to store the unique identifier (LID_1)

7. A data processing system according to claim 3, characterized in that at least
one processing element of the first and second processing elements (CPU, ProcA, ProcB,
ProcC) is arranged to store the result of the comparison of the programmable identifier
(PLID_1) with the unique identifier (LID 1).

8. A data processing system according to claim 5, characterized in that the data
processing system further comprises a control processing element, wherein the control
processing element is arranged to reconfigure the application, in response to the interrupt

signal

9. A data processing system according to claim 1, characterized in that the stream
of data objects (DS_Q, DS_R, DS_S, DS_T) comprises:

- a plurality of packets, the plurality of packets arranged to store data objects;

- a dedicated packet (419), the dedicated packet arranged to store the unique
identifier (LID_1).

10. A method of controlling a data processing system, the data processing system
comprising at least a first processing element (CPU, ProcA, ProcB, ProcC) and a second
processing element (CPU, ProcA, ProcB, ProcC) for processing a stream of data objects
(DS_Q, DS_R, DS_S, DS_T), wherein the first processing element is arranged to pass data
objects from the stream of data objects to the second processing element, and wherein the

first and the second processing element are arranged for execution of an application, the

10

15

20

25

30

WO 2004/077206 PCT/IB2004/050124

17

application comprising a set of tasks (TP, TA, TB1, TB2, TC), the method of controlling
comprising the following step:

- recognizing a unique identifier (LID_1) by at least one of the first and the
second processing element,

characterized in that the method of controlling further comprises the following steps:

- inserting the unique identifier into the stream of data objects,

- passing the unique identifier from the first processing element to the second

processing element.

11, A method of controlling a data processing system according to claim 10,
characterized in that the step of inserting the unique identifier into the stream of data objects
(DS_Q, DS_R, DS_S, DS_T) is performed by at least one of the processing elements (CPU,
ProcA, ProcB, ProcC).

12. A method of controlling a data processing system according to claim 10,
characterized in that the method further comprises the following steps:

- programming an identifier (PLID_1) in at least one task of the set of tasks (TP,
TA, TB1, TB2, TC),

- comparing the unique identifier (LID_1) with the programmed identifier
(PLID 1) by a corresponding processing element of the first and the second processing

elements (CPU, ProcA, ProcB, ProcC).

13. A method of controlling a data processing system according to claim 12,
characterized in that the method further comprises the following steps:

- pausing a task of the set of tasks (TP, TA, TB1, TB2, TC) by a corresponding
processing element of the first and second processing elements (CPU, ProcA, ProcB, ProcC)
upon a match between the programmable identifier (PLID_1) of said task and the unique
identifier (LID_1).

14. A method of controlling a data processing system according to claim 12,
characterized in that the method further comprises the following step:
- generating an interrupt signal by a processing element of the first and second

processing elements (CPU, ProcA, ProcB, ProcC) upon a match between the programmable

10

15

20

25

WO 2004/077206 PCT/IB2004/050124
18

identifier (PLID_1) of a corresponding task of the plurality of tasks (TP, TA, TBI, TB2, TC)
and the unique identifier (LID_1).

15. A method of controlling a data processing system according to claim 12,
characterized in that the method further comprises the following step:

- storing the unique identifier (LID_1) by a processing element of the first and
second processing elements (CPU, ProcA, ProcB, ProcC) for a corresponding task of the

plurality of tasks (TP, TA, TB1, TB2, TC).

16. A method of controlling a data processing system according to claim 12,
characterized in that the method further comprises the following step:

- storing the result of the comparison of the programmable identifier (PLID_1)
with the unique identifier (LID_1) by a processing element of the first and second processing
elements (CPU, ProcA, ProcB, ProcC) for a corresponding task of the plurality of tasks (TP,
TA, TB1, TB2, TC).

17. A method of controlling a data processing system according to claim 14,
characterized in that the data processing system further comprises a control processing
element and that the method further comprises the step of:

- reconfiguring the application by the control processing element, in response

to the interrupt signal.

18. A method of controlling a data processing system according to claim 10,
characterized in that the stream of data objects (DS_Q, DS_R, DS_S, DS_T) comprises:
- a plurality of packets, the plurality of packets being arranged to store data
objects,

- a dedicated packet (419), being arranged to store the unique identifier
(LID_1).

PCT/1B2004/050124

WO 2004/077206

1/5

1 Ol

Aowapy R
UOBIUNUILIOY
¢ 2014 22014 1 9044
aInjoauyoLy
® »
Buiddepy
—
— uonreolddy

WO 2004/077206 PCT/1B2004/050124

2/5
=
O
3
(]
2 3
[+
=
[an}
2 ¢
- 'V
2
L
=
<C
ek
[=
=
L
=
=
g 5

WO 2004/077206 PCT/1B2004/050124

3/5

|
|-

TB1
%
TC

[
{
FIG. 3

ml?%(&]

DS

LT
)
-

PCT/1B2004/050124

WO 2004/077206

4/5

7/

7/

1sa
/A § 8a
4 sa
0 sd
//—
b aIl Hd
/= —
6Ly
Sl
} aIld
Ly
»@ Shvy _
L aild I alld
{ i {
9G] L0 as— Sov VS— o

dS—]

60y
i

b ald

10¥

WO 2004/077206 PCT/1B2004/050124

5/5

501 505
v 3 I
The report_id is stored as received location ID. Store report_id as error ID

Compare report_id value with programmed 1503 Disable task
location 1D Generate interrupt

Identifiers
match ?

Y

No further action }—509 LocationDisable
flagis set?

Disable task

v y

InterruptEnable

flag is set? 517

\ 4)

A

515
No further action {519 Generate interrupt

v v

	Bibliographic Data
	Claim
	Drawing
	Description
	Abstract

