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Abstract

The architecture of the TriMedia CPU64 is based on the
TM1000 DSPCPU. The original VLIW architecture has
been extended with the concepts of vector processing and
superoperations. The new vector operations and superoper-
ations need to be supported by the compiler and simulator
to make them accessible to application programmers. It was
our intention to support these new features while remaining
compliant with the ANSI C standard. This paper describes
the mechanisms which were implemented to achieve this
goal. Furthermore, the optimization of applications needs
to address the vectorization of the functions to be imple-
mented. Some general guidelines for producing efficient
vectorized code are given.

1. Introduction

Media processors are a relatively new kind of processors.
In many ways, they take some characteristics from general-
purpose CPUs on the one hand, and from DSPs on the other.
Usually, the architecture and instruction set of media pro-
cessors are RISC-style, clearly following general-purpose
CPU designs, and breaking away from the DSP style of
incorporating irregular hardware and instruction set charac-
teristics such as special-purpose registers and irregular con-
nection networks. This regularity of the architecture of
media processors allows them to be programmed efficiently
in C, rather than in assembly.

Although the architecture of a media processor is quite
regular, usually a host of special-purpose operations are
supported in the instruction set. This aspect of media pro-
cessors is more akin to the DSP-style of architecture. The
special-purpose operations are designed to support specific
processing that is common in the application domain of
media processing, and are referred to as custom operations.
The presence of custom operations is one of the factors that
allow media processors to achieve a high performance level

for media processing tasks. See [1] for a more detailed ov
view of general VLIW characteristics.

The TriMedia CPU64 was designed as a successor to
DSPCPU as implemented in the TM1000. The TM100
contains many modules, such as input/output coprocess
a variable-length decoder, an image coprocessor, and, m
importantly, a 32 bit wide DSPCPU. This processor
called a DSPCPU to emphasize the fact that on the one h
the processor is not a general-purpose CPU, but designe
perform embedded signal processing, while on the oth
hand it does offer the high-level language programmabil
that is common for general-purpose CPUs. As is true for t
TM1000, the target domain of applications is digital med
processing, including tasks such as video and audio dec
ing, encoding and transcoding, and 3D graphics. Referen
[2] and [3] describe in detail the application domain an
architecture of the CPU64, while references [4] and [5] pr
vide additional information on the TriMedia architecture.

The application development environment for the Tr
Media line of processors includes an optimizing C com
piler. This compiler supports many features that are gene
to VLIW compilers. This paper will not elaborate on thes
generic VLIW compiler features, but will concentrate o
the issues that we needed to deal with to support the spec
architectural features of the CPU64. The reader is referr
to [6] for information on the TriMedia compilation system
and for further references on general VLIW compiler tec
nology.

Section 2 explains some basic concepts that have b
implemented in hardware and have been made available
the application programmer. Section 3 discusses a basic
central source of information for the compiler and simula
tor: the machine description file. Section 4 elaborates on t
specific support in the CPU64 compiler for the new vect
types and custom operations. Section 5 explains how
application programmer is supported in the issues related
vector programming. Section 6 shows how this new fun
tionality is supported both in the CPU64 development env
ronment and in standard ANSI C developmen
1
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environments. Section 7 offers some details on the develop-
ment environment that we use to simulate the CPU64. Sec-
tion 8 presents guidelines on application program
optimizations, specifically regarding vectorizing applica-
tion code. Section 9 finishes the paper by summarizing the
important issues that have been discussed.

2. Parallelism and instruction set

The basic architecture of the CPU64 is a VLIW
machine, which implies that, like superscalar RISC proces-
sors, it can perform several operations in parallel, and that,
unlike with superscalar RISC processors, these operations
are scheduled at compile time. This type of parallelism is
called instruction-level parallelism or Multiple Instruction/
Multiple Data (MIMD) parallelism. VLIW systems can
exploit this type of parallelism well.

Many of the applications of the targeted domain also
exhibit another type of parallelism, called data parallelism,
or Single Instruction/Multiple Data (SIMD) parallelism.
Media streams typically contain many instances of data that
need similar processing, such as pixels in a stream of digital
video. SIMD parallelism becomes increasingly important
when the register width of the processor is increased. When
expanding the register width from 32-bits registers in the
TM1000 to 64-bits registers in the CPU64, it becomes more
important to pack separate data elements into vectors of
data to be processed simultaneously. Once the stream of
data is available as vectors, it is necessary to have vector
functions available that operate on these vectors of data.
Thus, to efficiently exploit the availability of wide registers
in the CPU64, the system needs to support vectors of vari-
ous types plus a rich set of operations that process these
vectors.

This support needs to start at the application program-
ming level to unleash the full processing power of the
CPU64 processor. The TriMedia method of application
programming is a best-of-both-worlds approach to standard
C and assembly programming. If the application program-
mer can only use standard C to implement the desired func-
tionality, the compiler is burdened by finding a suitable
vectorization, and recognizing the available hardware oper-
ations in the arithmetic expressions. These tasks are notori-
ously difficult, and lead (at the present level of compiler
technology) to suboptimally generated code. Programming
the functionality in assembly leads (in principle) to optimal
code, but results in unreadable, weakly maintainable, and
probably unreliable code, not to mention the severe head-
aches on the part of the application programmer.

The strengths of both the compiler and the application
programmer can be combined by allowing the application
programmer direct access to the hardware operations from

C. The compiler then takes care of the correct translation
the program constructs, scoping rules for variables, sta
handling, register allocation, and operation schedulin
Especially these last two issues are highly complex f
VLIW processors. The application programmer can th
concentrate on choosing appropriate data representati
and calling the appropriate custom operations to acco
plish the necessary calculations.

The set of operations that is available to the applicati
programmer at the C level is somewhat different from th
set of operations that is supported in hardware. The rea
for this difference is that we want the C level programmer
interface to be both orthogonal and independent of t
actual hardware-supported operations. The independe
of the API and the hardware instruction set allows bett
portability of code over processors with changing instru
tion sets. The application-level instruction set is orthogon
in the sense that any regular operation is available for a
vector type. The orthogonality of the API ensures that t
application programmer does not need to consult the p
cessor hardware manual to see if some specific combi
tion of operation and type is supported. If the specif
combination is not available as a single hardware operati
the compiler will translate the C-level custom operatio
into a sequence of operations supported in hardware t
together implement the desired function.

3. Machine Description

The development of the CPU64 involved benchma
experiments with a large number of processor variations,
described in [7]. To support these benchmarking expe
ments, a retargetable compiler and simulator were creat
These retargetable tools read in a machine description
at run time, so that they adapt their behavior to the spec
instance of the processor to be tested. These proce
instances were described in a format that was designed s
cifically for this purpose. The format allows the specifica
tion of machine parameters, including register file
functional units, and instruction set. The following wil
focus on the function units and instruction set.

Firstly, for each type of functional unit, the machin
description file specifies how many times it is instantiate
in which issue slots it is available, and which operations t
functional unit supports. Figure 1 shows an example dec
ration of some functional units. This piece of machin
description file defines two types of functional units, on
multiplier unit for byte vectors, and a similar one for byt
vector superoperations. The regular multiplier is instan
ated in slots 2 and 3, the two superunits occupy slots 1
and 3+4, respectively. Both types of units support oper
tions with a latency of three clock cycles. These operatio
2
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are implemented for signed and unsigned byte vectors; the
regular operations produce only the lower halves of the
products, the superoperations produce the full double preci-
sion products.

Secondly, the machine description file specifies how
custom operations available at the C level map onto opera-
tions supported in hardware. Figure 2 shows an example
mapping of multiply operations available at the C level to
multiply operations available at the hardware level. The$x
variables indicate operation arguments and results.

Thirdly, the machine description file also contains infor-
mation on individual operations. For example, it describes
per operation how many arguments and results the opera-
tion has. This level of flexibility is necessary to describe the
so-called superoperations. These superoperations are
implemented in functional units that straddle two (possibly
even more) issue slots, and thus have access to the doubled
(possibly even more) number of read and write ports on the
register file. In this way, it is possible to implement opera-
tions that require more than two arguments and/or produce
more than one result.

The exact specification in the machine description file of
a custom (possibly super-) operation is described by its so-
called signature. The signature details the number of argu-
ments and results, and can also specify whether or not the

operation has any side effects other than the results p
duced. Figure 3 shows an example signature of some m
tiply operations. This signature describes thedblmul_bs
operation as having a guard, two arguments, and t
results. The keywordPUREsignifies that the operation has
no side effects.

4. Compiler

The TriMedia TM1000 compiler was extended to de
with the vectors and custom operations used in the proc
sor. However, great care was taken to ensure that the ap
cation programs that actually use these vectors and cus
operations can also be compiled and run in a standard ap
cation development environment.

The supported vector types include arrays of signed a
unsigned integers of 8, 16, and 32 bits long, and 32 bit flo
ing point vectors. These vectors are built into the CPU6
compiler, so that the types can be used directly in C. Ho
ever, these vector types can also be defined as structu
containing the appropriate integers for use by standard
compilers. Structures are needed, as they are used by v
for function arguments and results, as opposed to pl
arrays which are used by reference. Thus, a special inclu
file is available that defines these vectors as structures
standard C compilers, while for the CPU64 compiler th
definition is not read, and the built-in definitions for vecto
types are used. This way, the vector types can be used b
in the CPU64 development environment and in a standa
C development environment.

Figure 4 shows an example vector type definition. In th
fragment of a C header file, the preprocessor flagCPU64
switches between compilation by the cpu64 compiler and
standard C compiler. The vec_8sb type is built into th
cpu64 compiler; from the compiler’s point of view, the
additional types are scalar.

Figure 1. Example machine description file declara-
tion of functional units

FUNCTIONAL UNITS

    bmul
        SLOT    2 3
        LATENCY 3
        OPERATIONS
            mul_bs,mul_bu;

    super_bmul
        SLOT    1+2 3+4
        LATENCY 3
        OPERATIONS
            dblmul_bs,dblmul_bu;

Figure 2. Example machine description file mapping
of custom operations

MAPPING

    $0 sb_mul $1 $2 =
    $0 mul_bs $1 $2;

    $0 $1 sb_dblmul $2 $3 =
$0 $1 dblmul_bs $2 $3;

Figure 3. Example machine description file signa-
ture of a custom operation

OPERATIONS

SIGNATURE (r:r,r->r,r) PURE
    dblmul_bs;

Figure 4. Example C definition of a vector type

#ifdef CPU64
typedef vec_8sb vec64sb;
#else
typedef struct
    {int8 sb[8];} vec64sb;
#endif
3
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The CPU64 compiler of course needs to know many
details about the vector types, conversions between them,
equivalence of certain operations on these types, and so on.
We have endeavored to supply as much as possible of that
information in the machine description file. For example,
the many custom operations that work on these vectors are
described in the machine description file, which the com-
piler reads each time an application is compiled. All these
operations are thus known to the compiler, and some infor-
mation about the semantics of a few of them is built into the
compiler. This allows the compiler to generate efficient
code. Again, the definitions of custom operations are also
available in include files, for use by standard C compilers.
Figure 5 shows an example custom operation definition.

For most custom operations, the CPU64 compiler only
needs to know of their existence, and the number and types
of arguments and results. The compiler does not need to
know about the actual function implemented by most of the
custom operations. Therefore, the semantics of the custom
operations are not described in the machine description file.
The next section will elaborate on the implementation of
the semantics of the custom operations.

5. Vector memory model and register model

The CPU64 instruction set only supports vector load
and store operations on properly aligned memory
addresses. This means that addresses of vectors must be a
multiple of eight. In turn this implies, for example, that the
compiler must properly align statically allocated vector
variables and vector arrays in memory. Also, the ANSI C
function malloc() must return an address that is now a
multiple of eight, as the definition ofmalloc() requires
that its result may be cast to any pointer type.

The situation is complicated further by an additional
design constraint that we felt significantly increased the
accessibility of vector processing for application program-
mers. The design constraint is that an array of data must be
accessible both by scalar load and store instructions as well
as by vector load and store instructions. Now the C lan-
guage requires that appropriate address arithmetic results in
the desired element pointer, and therefore elements of
increasing array index must be stored on similarly increas-

ing addresses. This in effect fixes the ordering of vector e
ments in memory.

In addition to the ordering between elements of vecto
the storage of individual vector elements must be the sa
as the storage of the corresponding scalar elements. T
implies that the same endianness rules are applied to b
scalars and individual vector elements. As is the case for
TM1000, the CPU64 supports both types of endianness

The above paragraphs dealt with the memory model
vectors. Next we will discuss the register model of vector
When a vector is loaded from memory into a register, th
current processor endianness determines how the data
responding to individual vector elements are interpret
and ordered. However, we still have a choice to the order
which the elements of a vector are to be stored in the reg
ter. We may choose to store the element with the lowe
array index at the least significant end or at the most sign
icant end of the register. Thus, in principle we could intro
duce at this point a second type of endianness: regis
vector endianness.

It is common knowledge that endianness issues c
cause great confusion, and even thinking twice seldom
leads to better understanding. Introducing yet another ty
of endianness might entirely sabotage the concept of vec
processing. Somewhat surprisingly, instead of making t
situation more difficult by introducing vector processing
we were able to make vector processing a more intuiti
concept for the application programmer by introducing th
following abstraction.

The definition of custom operations at C level, a
described in the application programmer’s manual, doe
not refer to the register vector model at all. It only refers t
the indices of the individual vector elements, and thus hid
the actual implementation of the operation at the hardwa
level.

This abstraction actually makes life easier for the app
cation programmer as compared with the TM1000 situ
tion, where the ordering of vector elements in registers
highly visible. The CPU64 vector programming mode
releases the application programmer from maintaining
mental image of how the vector elements are stored both
memory and in registers. Experience has shown that t
release does not occur without concerted effort on the p
of the programmer, but once achieved, it is indeed expe
enced as a great improvement.

Figure 6 shows an example definition of a vector custo
operation from the application programmer’s manual. No
that the description only refers to actions on individual el
ments, and does not specify the order of the elements.

Now that this abstraction has been made for the applic
tion programmer, there is in fact no need for the syste
architect to actually implement both versions of regist

Figure 5. Example C definition of a custom operation

#ifndef CPU64
#define custom_op extern
#endif

custom_op vec64sb
   sb_mul(vec64sb x,vec64sb y);
4
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vector endianness. Therefore we simply chose to imple-
ment the convention that the element of the lowest index is
located in the register at the least significant end. The other
choice would have been just as valid, and the application
programmer would not have experienced any difference:
the C program would not change at all.

Note that this abstraction needs to be supported in the
instruction set by introducing load and store operations that
are specialized for specific vector types. Depending on the
current processor endianness (and the chosen register vec-
tor endianness), a load of a vector of 8-bit integers might be
different from a load of a vector of 16-bit integers.

6. Supporting libraries

The complete set of custom operations is supported by
the development environment. As mentioned before, the
compiler is notified of the available hardware custom oper-
ations through the machine description file. Thus, the syn-
tax of the hardware custom operations is defined.

The machine description file also contains information
for the compiler on how to translate the C-level custom
operations to the set of available hardware operations. Only
the simulator needs to know about the semantics of the cus-
tom operations. As the hardware implementation operates
on collections of 64 bits, and the interpretation of these col-
lections of 64 bits is entirely up to the specific operation
that executes on this data, the implementation of the seman-
tics of the custom operations is untyped, in the sense that
the routines only operate on generic 64-bit containers.
Inside the routines that implement the functionality, the
contents of the containers are cast to the appropriate vector
type, the operation is performed, and the result is cast back
into the generic 64-bit container type. This library of rou-
tines is referred to as the hardware operations library.

The hardware operations library is also used to support
native compilation of application programs that use CPU64
custom operations, but an additional set of routines is nec-
essary to connect the specifically typed C level custom
operations with the generically typed hardware functions.
This library is called the software operations library, and, in
effect, it represents the same mapping functionality as is

provided to the CPU64 compiler by the machine descri
tion file.

Figure 7 shows an overview of the libraries involved i
CPU64-specific and native compilation of application pro
grams that contain custom operations. The hardware op
ations library is used in the construction of the simulator b
linking it into the simulator executable. This simulator i
then able to execute the custom operations as it encoun
them in the instruction stream while interpreting an app
cation compiled by the CPU64 compiler.

For compilation towards a native executable, the app
cation is compiled while theCPU64 preprocessor flag is
inactive. Subsequently, the hardware operations library,
software operations library, and the application are link
into the executable which can run on the native platform

7. Simulator

The CPU64 simulator contains modules that correspo
to the major blocks of a complete TriMedia chip. Example
of these modules are the main memory interface, the hig
way data transport bus, the DSPCPU itself, etc. The sim
lator can perform cycle-accurate simulations of the ent
chip and external memory. The speed achieved during s
ulations is about 30K cycles per second on a UNIX wor

Figure 6. Example vector custom operation definition

void sb_dblmul (vec64sh *v, vec64sh *w, vec64sb x, vec64sb y)

Returns the elementwise product of x and y at full precision.
The first result operand will get the low indexed half of the results,
the second result the high indexed half.

Thus, for all i,0<=i<4: *v[i]=x[i]*y[i] and *w[i]=x[i+4]*y[i+4]

Figure 7. Overview of CPU64 and native compilation
trajectories

sw_ops applicationsimulator

native
executable

simulator
executable

TriMedia
executable

interpretation

gcc for functional development
gcc to build tool

tmcc for performance measurement

hw_ops
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station, which corresponds to a factor on the order of
10,000 below real-time performance.

The significant gap in simulated performance versus
real-time performance urged us to support native compila-
tion of applications. Thus, application programmers can
develop their programs at the functional level by compiling
and executing natively on a UNIX workstation. Once the
application runs correctly, the application programmer can
make specific test runs using the simulator to optimize the
code. So, the simulator is used only in the later stages of
application development. In this stage of development, the
simulator provides crucial information on the run-time
behavior of the application. The simulator collects and
writes statistical information to a file, detailing where the
CPU64 spends its time, and in what way: how many
instructions were executed in parallel, how many cycles the
processor was waiting on instruction or data cache misses,
etc. This information can then be analyzed by the applica-
tion programmer in order to optimize the performance of
the application.

8. Optimization

As is true for all high-performance computing systems,
it is easier to improve processor computing bandwidth than
memory I/O bandwidth. Therefore, considering the tar-
geted six-fold increase of performance of the CPU64 with
respect to the TM1000, it becomes highly important to
write and optimize applications to utilize the available
memory bandwidth most efficiently. Ideally, the optimiza-
tion process begins before a single line of code is written.
From the outset, it is important to plan the way the data
flows through the machine, when to write back data to
memory versus when to try to keep it in registers, and in
which type of vectors the data needs to be packed. Once this
global application structure is in place, the individual func-
tions can be implemented.

Up to this stage the application can be developed using
native compilation, enabling a short functional develop-
ment cycle. Once the application has been implemented in
a functionally correct way, the local optimization process
can start. The local optimization process is very similar to
the optimization process of the TM1000. The optimization
is guided by statistical information from simulated runs of
the application, possibly supplemented by information
from intermediate files that are generated by the compiler,
such as assembly code. Thus, although writing assembly is

discouraged, it may be necessary to study generated ass
bly in order to improve the efficiency of generated code.

9. Conclusions

The concepts that were implemented in the CPU64
increase the performance include vector processing a
superoperations. To fully support these new conce
throughout the entire platform, vector types were built in
the TriMedia compiler, both the orthogonal C-level instruc
tion set and the hardware instruction set were described
the machine description file, and the semantics of the c
tom operations were made available in supporting librarie
The resulting platform offers an intuitive approach to ve
tor programming, allows application development wit
standard C compilers resulting in short development cycl
and supports subsequent optimization of the applicati
based on cycle-accurate simulations.
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